
Page | 1

 A study of Causally-Consistent Lazy Model for

 a Data-Centric Distributed Application

Me Me Win, Win Win Zaw
University of Computer Studies, Yangon

myacho.87@gmail.com

Abstract

 In distributed database system, replicated
databases are composed of many copies of databases
distributed across different sites. Distributed
applications frequently use replications to achieve
higher level of performance, reliability and
availability. The main challenge of database
replication is to keep the data copies to be consistent
in the presence of updates. In this paper, we study
how the replicated databases can be prevented
inconsistent data among users who access the
replicated database simultaneously. Since, causal
consistency perform operations that are causally
related must be seen in causal order by all processes.
Our study is focused on causally-consistent lazy
model for a data-centric distributed application. For
case study, we consider on Sale Ordering System.

Keywords: Replicated Database, Lazy Master
Replication, Causally-Consistent, Data-Centric
consistency model

1. Introduction

Nowadays, computers are widely used in
business and society all over the world. Business
environment has an increasing need for distributed
database and client-server applications as the desire
for reliable, scalable and accessible information.
Distributed database systems provide an
improvement on communication and data processing.
So, distributed systems become popular. Using
database in a single server causes fail and corruption
in servers.

 Therefore, databases are replicated and
distributed across several sites. In this paper,
replicated databases are stored on multiple server
machines and multiple clients are accessed this
database using online and to perform consistency
control on that databases. The purpose of this study
is to prevent inconsistent data among users who
access the databases simultaneously. Users want to
read up-to-date information so the system needs to
guarantee consistency when users are making
concurrent access. So, consistency control is
important part of distributed system. Distributed
system has two consistency models. They are data-
centric consistency model and client-centric

consistency model.
 In the following, Section 2 describes related work
with causally-consistent lazy replication. Section 3
describes data-centric consistency model. Section 4.
describes case study overview. Section 5 describes
the proposed system. Section 6 describes
performance evaluation. Section 7 is conclusion and
Section 8 describes all references of this paper.

2. Related work

 Andrew Berry is described theory of causality.
Maintenance of causality information in distributed
systems has previously been implemented in the
communications infrastructure with the focus on
providing reliability and availability for distributed
services. This approach has a number of advantages,
moving causality information up into the view and
control of the application programmer is useful. [1]
 Michel Raynal and colleagues are proposed
causally consistent distributed services when
multiple related services are replicated to meet
performance and availability requirements. Causal
consistency is well suited for distributed services
such as cooperative document sharing. Causal
consistency is attractive because of the efficient
implementations that are allowed by it. Causally
consistent distributed services allow service instances
to be created and detected according to service in the
distributed system. [2]
 Ladin and colleagues are proposed a scheme that
provides data freshness guaranteed to read and write
operations. In their work, if all writes are forced
operations, they are directed to a single “primary”
site, which orders them. This site uses a Two-Phase
commit protocol to propagate in order, each forced
write’s update to a majority of replicated sites.
Subsequent operations are guaranteed to the effect of
the forced write’s. In this work there is no notion of
sessions and thus no provision of session guarantees.
[4]

3. Data-Centric Consistency Model

 A consistency model is essentially a contract
between processes and the data store. It says that if
processes agree to obey certain rules, the store

Page | 2

promise to work correctly. Process that performs
read on data item expects the value of last write. So,
the system needs to use consistency models. But
difficult to define which write was last without
global clock. Distributed systems have two
consistency models. There are data-centric
consistency model and client-centric consistency
model.
 Data-centric consistency model divided into two
parts of consistency models. These are strong
consistency models and weak consistency models. At
strong consistency model, operations on shared data
are synchronized. Strong consistency models are
strict consistency, sequential consistency and causal
consistency and FIFO consistency. At weak
consistency model, synchronization occurs only
when shared data is locked and unlocked. Weak
consistency models are generally weak consistency,
release consistency and entry consistency. Causally-
Consistent Lazy Replication approach, is weaker
than strict consistency and sequential consistency but
stronger than FIFO consistency model, is used in this
system. [3]

3.1 Causal consistency

 Operations that are causally related must be
seen in causal order by all processes. Concurrent
writes may be seen in different order on different
machines. Concurrent writes may be seen in different
order by different processes. Concurrent operations
that are not causally related. Implementation must
keep dependencies between causal operations.
Potential causality can be applied to a memory
system by interpreting a write as a message-send
event and a read as a message-read event. A memory
is causally related events. Causally unrelated events
(concurrent events) can be observed in different
orders. For example, the following is a legal
execution history under CC but not under SC:

 Figure [1]: Causally Consistent

Note that W(x)a and W(x)2 are causally related as P2
observed the first write by P1. Furthermore, P3 and
P4 observe the accesses W(x)b and W(x)c in
different orders, which would not be legal under SC.
 Among the uniform models, CC appears to be
one of the more difficult to implement in hardware.
This can probably be explained by the fact that most
other models have been designed with a hardware
implementation in mind. However, this does not
imply that a CC implementation of one of the simpler
uniform models. [5]

3.2. Causally-Consistent Lazy Replication
 Causally-Consistent Lazy Replication performs
two operations:
 (i) Processing Read Operations
 (ii) Processing Write Operations

 (i) Processing Read Operations

 When a client C wants a read operation R to be
performed, the timestamp DEP (R) of the associated
read request is set equal to LOCAL(C).i.e.,

DEP (R): = LOCAL(C)
This timestamp reflects what the client currently

knows about the data store. The request is sent to one
of the copies Li is stored in that copy’s read queue.
An incoming read request R at a copy Li is stored in
that copy’s read queue. In order to process R, it is
necessary that knows about the state. For each copy,
DEP(R) [j] < = VAL (i) [j].i.e.,

DEP(R) < = VAL (i) (j)
 Copy Li returns the value of the requested data
item to the client, along with VAL (i). i.e.,

Data & VAL (i)
 The client subsequently adjusts its own vector
timestamp LOCAL(C) by setting each of the entries
LOCAL (C) to the value max {LOCAL(C) [j], VAL
(i) [j]}. i.e.,
 LOCAL(C):=max {LOCAL(C) [j], VAL (i)}.
 [3]

Figure [2]: Performing a read operation at a replica
 Copy

 (ii)Processing Write Operations

 When a client C wants to write operation to be
performed, the timestamp DEP (W) of the associated
write request is set equal to LOCAL (C). i.e.,

DEP (R): = LOCAL(C)
 The request is sent to one of the copies Li. An
incoming write request W at a copy Li is stored in
that copy’s write queue. When a copy receives a
write request W from a client, it increments WORK
(i) [j], but leaves to other entries intact. The write
request receives a timestamp ts(W) by Li , ts(W)[i]

Page | 3

set equal to WORK(i)[j] is set equal to WORK(i)[j]
and the other entries ts(W)[j] is set to DEP(W)[j].

i.e., WORK (i) (j): = WORK (i) (j) + 1
 This timestamp is sent back acknowledgement to
the client, which adjusts i.e., LOCAL(C) by setting
each entry to max {LOCAL(C) [k], ts (W) [k]}. i.e.,

LOCAL(C):= max {LOCAL(C) [j], ts (W)}
 A write request W can be carried out if Li has
processed all updates on which W depends. For each
entry DEP (W) [j] <= VAL (i) [j]. i.e.,
 DEP(R) < = VAL (i) (j) [3]

 Figure [3]: Performing a write operation at a replica
 Copy

4. Case Study Overview

 In this paper, the case study is an implementation
of data-centric consistency model using Causally-
Consistent Lazy Replication approach. It is a
consistency control scheme for client-server systems.
Data store is physically distributed and replicated
across three servers. Among these servers, one server
is primary server and remainders are replica servers.

 Figure [4]: Case Study Overview

 These replica servers are also known as secondary
servers. Primary server stores primary copy and
secondary servers store secondary copy. Primary
copy is stored at master site and secondary copies are
stored at slave sites. Each server of the data store
consists of a replicated database and two queue of
pending operations. They are read queue and write
queue. The read queue consists of read operations

and the write queue consists of write operations.
Clients can access book information from any server
(primary server and secondary servers). Clients can
perform read operations themselves. But write
operations cannot perform by clients. Write
operations are performed by the system of primary
server. The case study overview is shown in Figure
[4].

5. The Proposed System

 The proposed system uses Causally-Consistent
Lazy Replication approach that is performed on
Client-Server architecture. The case study for this
approach is Book Ordering System. The system has
three servers. They are primary server and secondary
servers (replica servers). Primary server is located to
the master site that stores primary copy. Secondary
servers are located to the slave site that stores
secondary copies. The replicated database of primary
server contains authoritative data that could be
permanently stored without violating the global
consistency model of the data store. Updating can
only be performed on the primary server and the
update data are propagated towards the other replica
servers (secondary servers). Secondary servers are
read only servers.
 Each server of the data store consists of
replicated database and two queues of pending
operations. These two queues are read queue and
write queue. The read queue consists of read
operations that need to be held back until the
replicated database is consistent. Eg. User request
read operation that has already seen the effect of
write operation. The write queue consists of write
operations that need to be held back until the
replicated database is consistent. A write operation
can be carried out only if the replicated database of
primary server is updated with all causally preceding
operations on which that write operation depends.
Updating can be performed only on the primary
server and the updates are propagated towards the
secondary servers.
 Clients can access book information by using
online. Clients can choose two types of requests that
are read request and write request. Read request is
used for querying book information from the server.
Write request is used for ordering book from the
server. For read operation, clients can get
information by querying from any servers (primary
server and secondary servers). Clients can perform
read operations at any server but client cannot
perform write operations themselves. Write
operations are only performed by primary server.
Causal consistency can perform operations that are
causally related must be seen in causal order by all
processes. To ensure, data is causally-consistent,
case study is used Lazy Master Replication for

Page | 4

update propagation.
 Clients can perform operations that are possible
four types: Read-Read Condition, Read-Write
Condition, Write-Read Condition and Write-Write
Condition. Write-Write Condition can be classified
into two types upon ordering: same book ID and
different book ID.

(i) Read-Read Condition

 The system allows reading book information
concurrently for all clients. So, multiple clients can
read book information at any server (primary server
and secondary servers).

(ii) Read-Write Condition

 Client 1 requests to query book information at
replica server. Client 1 can read all book information.
At the same time, Client2 requests to order book at
replica server. If client’s order of book quantity is
less than or equal to book quantity in the database
then this order is valid. Otherwise order is invalid.
Replica server checks Client 2’s order is valid or
invalid. If order is invalid then the system sends
“Order Invalid” message to Client2. If order is valid
then the replica server sends Client 2’s request to the
primary server. When the primary server receives
this request, it updates its own copy. Updates from
the primary server are successfully finished then
these updates are propagated lazily to other
secondary copies. If Client2’s ordering is
successfully finished then Client 1 can read new
book information by the system is auto changing.
Client 1 can read synchronizing up-to-date book
information that is consistent.

(iii) Write-Read Condition

 Client requests to order book at replica server.
Replica server checks client’s order is valid or
invalid. If order is invalid then the system sends
“Order Invalid” message is sent to client. If order is
valid then the replica server sends client’s request to
the primary server. When the primary server receives
this request, it updates its own copy. Updates from
primary server are successfully finished then these
updates are propagated lazily to other secondary
copies. After update propagation is successfully
finished, data from all sites are synchronized and
consistent. At this time, client requests to read book
information at replica server. Replica server sends all
book information to client as shown in Figure [5].
The variables are used in sequence diagram are:

� DEP = timestamp (counter (c))
� LOCAL (C) = vector timestamp

 (vector counter (vc))
� VAL (i) = database counter (dc)
� W (i)[i] = number of write operations

� ts (W) = timestamp (counter (c))

 Figure [5]: Sequence diagram of Write-Read
 Condition

(iv)Write-Write Condition

 Write-Write Condition can be classified into two
types upon ordering:

(a)Write-Write Condition (same book ID)
(b)Write-Write Condition (different book ID)

 (a)Write-Write Condition (same book ID)

 Client 1 and Client 2 request to order book at
replica server. If two requests of book IDs are the
same then the system checks their arrival time. If
Client 1’s arrival time is less than Client 2’s arrival
time then Client1’s request is access to order.
According to their arrival times, Client2’s request is
pending in the queue. Replica server checks
Client1’order is valid or invalid. If order is invalid
then the system sends “Order Invalid” message to
Client1. If order is valid then the replica sends
Client1’s request to the primary server. When
primary server receives this request, it updates its
own copy. Updates from primary server are
successfully finished then these updates are
propagated lazily to other secondary copies. If Client
1’s order is successfully finished then the system
checks waiting requests in the queue. Client 2’s
request is waiting in the queue and the system starts
to perform the Client 2’s request. Replica server
sends Client2’s request to the primary server. When
primary server receives this request, it updates its
own copy. Updates from primary server is
successfully finished, the updates are propagated

Page | 5

lazily to other secondary copies. After update
propagation, both two clients are seen
synchronizing up-to-date data that are consistent.
Data from all sites are synchronized and consistent.

 (b) Write-Write Condition (different book ID)

 Client 1 requests to order book at replica server.
At the same time, Client 2 requests to order book at
replica server. Since, two clients request are not the
same, the system allows two clients to access
processing concurrently. Replica server checks that
their orders are valid or invalid. If orders are invalid
then the system sends “Order Invalid” messages to
the clients. If orders are valid then the system sends
their requests to the primary server. When primary
server receives this request, it updates its own copy.
Updates from primary server are successfully
finished then these updates are propagated lazily to
other secondary copies. After update propagation is
successfully finished, both two clients are seen
synchronizing up-to-date data that are consistent.
Data from all sites are synchronized and consistent.

6. Performance Evaluation

 To quantity the performance, we use several
measures. Completion time is the total execution of
the application in a given system. The performance
measures are Computation time, Synchronization
time, Communication time and Network handling
time. In these performance measures, we are used the
communication time for performance evaluation.

 Figure [6]: Computation time

7. Conclusion

 To study how we can implement a distributed
database replication consistency management system
using causally-consistent lazy replication. By using
causally-consistent, it can help to get consistent data
when updating copies of databases across different
sites. Replication can give high availability from
creation many copies of data at many servers that
reduces data access latency and replica transparency.
Replication can give good performance and
reliability when one copy crashes by node failures
and network partitions. Implementation must keep
dependencies between operations using causally-
consistent. Causally-consistent is difficult to
implement in hardware among consistency controls
but that reduce operation cost using lazy replication.
Consistency across multiple related objects is not
considered and hence vector timestamps are
sufficient in the lazy replication protocol.

8. References

[1]. Andrew Berry, “An application-level

implementation of causal timestamps and causal

ordering,” IEEE Trans. Distrib.System.Engng 2, May

1995.pp.74-86. Printed in the UK.

[2]. Ahamad, M…., M. Raynal, “An adaptive

protocol for implementing causally-consistent

distributed services,” in Proceedings of the 18th

IEEE International Conference on Distributed

Computing Systems, May 1998 , pp. 86-93.

[3]. Andrew S. Tanenbaum, Maarten van Sten,

“Distributed Systems Principles and Paradigms,”

International edn, Prentice Hall, 2002.

[4]. B.Lislov, L.Shrira, R.Ladin and S.Ghemawat,

“Providing High Availability Using Lazy

Replication,” in ACM Transactions on Computer-

Systems, 10(4): 360-392, 1992.

[5]. David, Mosberger, “Memory Consistency

Models,” Oper.System.Rev, vol.27, no.1, pp.18-26,

Jan 1993.

[6]. Mustague Ahamad, Ranjit John, “Evaluation of

Causal Distributed Shared Memory for Data-race-

free Programs,” Georgia Institute of Technology,

College of computing, Atlanta, GA 30332-0280,

1994.

Page | 6

