A study of Causally-Consistent Lazy Model for

a Data-Centric Distributed Application

Me Me Win, Win Win Zaw
University of Computer Studies, Yangon
myacho.87@gmail.com

Abstract consistency model.

. . In the following, Section 2 describes related work
In distributed database system, replicated with causally-consistent lazy replication. Sectbn

dgta_bases are compose_d of many copies qf d_atabase&escribes data-centric consistency model. Section 4

dlstrl_but_ed across _different _5|te_s. D'St”bu_ted describes case study overview. Section 5 describes

appllcanons frequently use repllcatlons to achieve the proposed system. Secton 6 describes

higher level of performance, reliability and performance evaluation. Section 7 is conclusion and

availab!lity.. The main challenge of database Section 8 describes all references of this paper.
replication is to keep the data copies to be cdasts

in the presence of updates. In this paper, we study.
how the replicated databases can be preventedz' Related work
inconsistent data among users who access the)))
replicated database simultaneously. Since, causal —Andrew Berry is described theory of causality.
Consistency perform operations that are Causa”y Maintenance of Causallty information in distributed
related must be seen in causal order by all progess Systems has previously been implemented in the
Our Study is focused on Causa”y-consistent |azyC0mmUnlcat|0nS infrastructure with the focus on
model for a data-centric distributed applicationof= providing reliability and availability for distriiad
case study, we consider on Sale Ordering System. ~ Services. This approach has a number of advantages,
moving causality information up into the view and
Keywords: Replicated Database, Lazy Master control of the application programmer is usefu]. [1
Replication, ~ Causally-Consistent, Data-Centric ~ Michel Raynal and colleagues are proposed

consistency model causally consistent distributed services when
multiple related services are replicated to meet
1. Introduction performance and availability requirements. Causal

consistency is well suited for distributed services
Nowadays, computers are widely used in such as cooperative document sharing. Causal
business and society all over the world. Businessconsistency is attractive because of the efficient
environment has an increasing need for distributedimplementations that are allowed by it. Causally
database and client-server applications as theedesi consistent distributed services allow service imsts
for reliable, scalable and accessible information. to be created and detected according to servitieein
Distributed database systems provide an distributed system. [2]
improvement on communication and data processing. Ladin and colleagues are proposed a scheate th
So, distributed systems become popular. Usingprovides data freshness guaranteed to read ane writ
database in a single server causes fail and caorupt operations. In their work, if all writes are forced
in servers. operations, they are directed to a single “primary”
Therefore, databases are replicated andsite, which orders them. This site uses a Two-Phase
distributed across several sites. In this paper,commit protocol to propagate in order, each forced
replicated databases are stored on multiple servemrite’s update to a majority of replicated sites.
machines and multiple clients are accessed thisSubsequent operations are guaranteed to the effect
database using online and to perform consistencythe forced write’s. In this work there is no notioh
control on that databases. The purpose of thisystud sessions and thus no provision of session guasantee
is to prevent inconsistent data among users who[4]
access the databases simultaneously. Users want to
read up-to-date information so the system needs tq3, Data-Centric Consistency Model
guarantee consistency when users are making
concurrent access. So, consistency control is
important part of distributed system. Distributed
system has two consistency models. They are data
centric consistency model and client-centric

A consistency model is essentially a contract
between processes and the data store. It say# that
processes agree to obey certain rules, the store

Page |1

promise to work correctly. Process that performs 3.2, Causally-Consistent L azy Replication

read on data item expects the value of last wéte. Causally-Consistent Lazy Replication performs
the system needs to use consistency models. Buwo operations:
difficult to define which write was last without (i) Processing Read Operations

global clock. Distributed systems have two (jj) Processing Write Operations
consistency models. There are data-centric

consistency model and client-centric consistency (i) Processing Read Operations
model.

Data-centric consistency model divided itvto When a clien€ wants a read operatid® to be

parts of consistency models. T_hese are strong erformed, the timestanmpEP (R) of the associated
consistency models and weak consistency models. A ead request is set equalt®CAL (C).i.e

strong consistency model, operations on shared data DEP (R): = LOCAL (C)
are synchronized. Strong consistency models are i
strict consistency, sequential consistency andataus Kkno
consistency and FIFO consistency. At weak

consistency model,_ synchronization occurs only An incoming read reque® at a copyL; is stored in
when shared data is locked and unlocked. Wea hat copy’s read queue. In order to procBsst is

consistency models are generally weak consistencynecessary that knows about the state. For each copy
release consistency and entry consistency. CausaIIyDEP(R) [il <= VAL (i) [j].i.e

Consistent Lazy Replication approach, is weaker DEP(R) < = VAL (i) (j) '

than strict consistency and sequential consistenty
stronger than FIFO consistency model, is usedif th

This timestamp reflects what the client currently
ws about the data store. The request is semtdo
of the copied.; is stored in that copy’'s read queue.

CopyL; returns the value of the requested data
item to the client, along witllAL (i). i.e.,

system. [3] Data & VAL (i)
) The client subsequently adjusts its own vector
3.1 Causal consistency timestampL OCAL (C) by setting each of the entries

LOCAL (C) to the valuenax{LOCAL(C) [j], VAL

Operations that are causally related must b () [j]}.i.e,
seen in causal order by all process€sncurrent LOCAL (C):=max {LOCAL(C) [j], VAL (i)}.
writes may be seen in different order on different [3]
machines. Concurrent writes may be seen in differen
order by different processes. Concurrent operations
that are not causally related. Implementation must | ¥ f{fﬁzgﬁjﬁ;ﬂ;ﬂ:ﬁ; (secor ot 5
keep dependencies between causal operations| = vai(p=daabasecouner @)
Potential causality can be applied to a memory © DERRYLOCAL) E'DEP(R)“\“L“)
system by interpreting a write as a message-senc| ctem
event and a read as a message-read event. A memor ™
is causally related events. Causally unrelated tsven 0

(concurrent events) can be observed in different :
4.LOCAL(C)=max {LOCAL(C), VAL(i)}

orders. For example, the following is a legal
execution history under CC but not under SC:

Replica i

3.Data & VAL(i)
Pl: W(x)a W(x)e
b2: R(x)a Wb
P3- R(x)a R(x)c R(x)b
P4 R(x)a R@b R(xle Figure [2]: Performing a read operation at a replic
Copy
Figure [1]: Causally Consistent (ii)Processing Write Operations

Note that W(x)a and W(x)2 are causally relatedas P \when a clienC wants to write operation to be
observed the first write by;PFurthermore, P3 and _ performed, the timestamp DE®/) of the associated
P4 observe the accesses W(x)b and W(X)c inyrite request is set equal tdCAL (C).i.e.,

different orders, which would not be legal under. SC DEP (R): = LOCAL(C)

Among the uniform models, CC appears to be The request is sent to one of the copiesAn
one of the more difficult to implement in hardware. incoming write requesw at a copylL; is stored in
This can probably be explained by the fact thattmos that copy’s write queue. When a copy receives a
other models have been designed with a hardwargyrite requesw from a client, it increment&/ORK
implementation in mind. However, this does not (i) [j], but leaves to other entries intact. The write

imply that a CC implementation of one of the simple request receives a timestartgw) by L; , ts(W)[i]
uniform models. [5]

Page | 2

set equal t’WWORK((i)[j] is set equal toNORK (i)[j] and the write queue consists of write operations.

and the other entrigs(W)[j] is set toDEP(W)[j]. Clients can access book information from any server
i.e, WORK (i) (j): =WORK (i) (j) +1 (primary server and secondary servers). Clients can
This timestamp is sent back acknowledgement toperform read operations themselves. But write

the client, which adjustse., LOCAL(C) by setting operations cannot perform by clients. Write

each entry to ma{d. OCAL(C) [K], ts(W) [K]}.i.e, operations are performed by the system of primary
LOCAL(C):= max {LOCAL(C) [j], ts(W)} server. The case study overview is shown in Figure
A write requestW can be carried out if; has [4].

processed all updates on whidhdepends. For each

entryDEP (W) [j] <= VAL () [j].i.e.,
DEP(R) < = VAL (i) () [3] 5. The Proposed System

The proposed system uses Causally-Consistent

ngﬁﬂli;‘;ﬁﬁ?liﬁ Lazy Replication approach that is performed on
1s 1]-= 1913 . . .
(W) = DEP[] 5.DEP(R) <=VAL(}) Client-Server architecture. The case study for this

approach is Book Ordering System. The system has
three servers. They are primary server and secgndar
servers (replica servers). Primary server is latabe

the master site that stores primary copy. Secondary
servers are located to the slave site that stores
secondary copies. The replicated database of primar
WORK ()fi] =no: of write operations server contains authoritative data that could be

1.DEP(R)=LOCAL(C)
Client

Ty

Write queue

4 LOCAL(C)-=max {LOCAL(C), ts(W) }

TR = tmestamp (counter () Repliea ! permanently stored without violating the global
consistency model of the data store. Updating can
Figure [3]: Performing a write operation at a ie@l only be performed on the primary server and the
Copy update data are propagated towards the other aeplic
servers (secondary servers). Secondary servers are
4. Case Study Overview read only servers.

Each server of the data store consists of

In this paper, the case study is an implementationéplicated database and two queues of pending
of data-centric consistency model using Causally- OPerations. These two queues are read queue and
Consistent Lazy Replication approach. It is a Write queue. The read queue consists of. read
consistency control scheme for client-server system OPerations that need to be held back until the
Data store is physically distributed and replicated replicated dgtabase is consistent. Eg. User request
across threservers. Among these servers, one server'€ad operation that has already seen the effect of

is primary server and remainders are replica server Write operation. The write queue consists of write
operations that need to be held back until the

replicated database is consistent. A write opeamatio
Clieat 1 Clicat 2 Clicat 3 can be carried out only if the replicated databafse
| | | Network primary server is updated with all causally prengdi
. ! e ! !) operations on which that write operation depends.
Quene \ Updating can be performed only on the primary
server and the updates are propagated towards the
secondary servers.

Clients can access book information by using
online. Clients can choose two types of requests th
are read request and write request. Read request is

. used for querying book information from the server.
N\ Dt s Write request is used for ordering book from the
server. For read operation, clients can get
information by querying from any servers (primary
server and secondary servers). Clients can perform

Pri) dread operations at any server but client cannot
servers. Primary server stores primary Copy andnerform write operations themselves. Write

secondary sgrvers store secc:jndary SOPV' Primary, e rations are only performed by primary server.
copy Is stored at master site and secondary Capees 4 ,53| consistency can perform operations that are

stored at slave sites. Each server of the data stoEEausa”y related must be seen in causal order Iby al

i
i

i
Pending)
Request!

Figure [4]: Case Study Overview

These replica servers are also known as sacpnd

consists of a replicated database and two queue of,cesses. To ensure, data is causally-consistent,

pending operations. They are_read queue and Wiite ase study is used Lazy Master Replication for
gueue. The read queue consists of read operations

Page | 3

update propagation. < ts (W) = timestamp (counter (c))
Clients can perform operations that are pdessib

four types: Read-Read Condition, Read-Write T O oo B peve—"

Condition, Write-Read Condition and Write-Write Resolvas Resolver | | Server Serves

Condition. Write-Write Condition can be classified — = i I ;

into two types upon ordering: same book ID and Reqest iofonder (o) bogk & e !

different book ID.

1 @Check valid
]
= I

1
1 1
1 1
1 1 I
1 1 Send request
(i) Read-Read Condition ! ' ! WO =W @l 1
! ' ! U (Wl = WG
The system allows reading book information i i l | sl
Y | Sends(W) 1 | I
:.__|‘ i 7 Check e<=4d
read book information at any server (primary server (e, 5OV i)
and secondary servers). ' ' Yes
: | Updating
1

L . s 1 Send update damm
(if) Read-Write Condition DUPM;g— .
Requestto fﬂr_aﬂ book informgtion & ¢) .I

b Check ¢ <=ldc
Yes

]
I
r
1
1
1
!
I
1
i
1
1
1
. . . 1
concurrently for all clients. So, multiple clientan : M lmm 17T
i
1
1
1
1
1
1
1
1

Client 1 requests to query book information at !
replica server. Client 1 can read all book inforiorat |
At the same time, Client2 requests to order book at + = ---=
replica server. If client’s order of book quantity i
less than or equal to book quantity in the database
then this order is valid. Otherwise order is indali !

Replica server checks Client 2’s order is valid or
invalid. If order is invalid then the system sends Figure [5]: Sequence diagram of Write-Read
“Order Invalid” message to Client2. If order is idal Condition

then the replica server sends Client 2’s requesitdo

primary server. When the primary server receives (iv)Write-Write Condition

this request, it updates its own copy. Updates from

the primary server are successfully finished then Write-Write Condition can be classified into two
these updates are propagated lazily to othertypes upon ordering:

secondary copies. If Client2’s ordering is (a)Write-Write Condition (same book ID)
successfully finished then Client 1 can read new (b)Write-Write Condition (different book ID)
book information by the system is auto changing.

Client 1 can read synchronizing up-to-date book ()Write-Write Condition (same book ID)
information that is consistent.

information

P
[
B
H
-
B

Client 1 and Client 2 request to order book at
(iii) Write-Read Condition replica server. If two requests of book IDs are the
same then the system checks their arrival time. If
Client requests to order book at replicaveser Client 1's arrival time is less than Client 2'sigal
Replica server checks client's order is valid or time then Clientl’s request is access to order.
invalid. If order is invalid then the system sends According to their arrival times, Client2's requést
“Order Invalid” message is sent to client. If order ~ pending in the queue. Replica server checks
valid then the replica server sends client’s refjtes Clientl’order is valid or invalid. If order is iniid
the primary server. When the primary server receive then the system sends “Order Invalid” message to
this request, it updates its own copy. Updates fromClientl. If order is valid then the replica sends
primary server are successfully finished then theseClientl’s request to the primary server. When
updates are propagated lazily to other secondaryprimary server receives this request, it updates it
copies. After update propagation is successfullyown copy. Updates from primary server are
finished, data from all sites are synchronized andsuccessfully finished then these updates are
consistent. At this time, client requests to readk ~ Ppropagated lazily to other secondary copies. léli
information at replica server. Replica server saitls 1's order is successfully finished then the system

book information to client as shown in Figure [5]. checks waiting requests in the queue. Client 2's
The variables are used in sequence diagram are: ~ request is waiting in the queue and the systentsstar
< DEP = timestamp (counter (c)) to perform the Client 2's request. Replica server

% LOCAL (C) = vector timestamp sends Client2’s request to the primary server. When
(vector counter (vc)) primary server receives this request, it updates it

% VAL (i) = database counter (dc) own copy. Updates from primary server is

< W (i)[i] = number of write operations successfully finished, the updates are propagated

Page | 4

lazily to other secondary copies. After update 7. Conclusion

propagation, both two clients are seen

synchronizing up-to-date data that are consistent. To study how we can implement a distributed

Data from all sites are synchronized and consistent database replication consistency management system
using causally-consistent lazy replication. By gsin

(b) Write-Write Condition (different book D) causally-consistent, it can help to get consistiata
when updating copies of databases across different
Client 1 requests to order book at replica server.sites. Replication can give high availability from
At the same time, Client 2 requests to order bdok a creation many copies of data at many servers that
replica server. Since, two clients request aretimet ~ reduces data access latency and replica transparenc
same, the system allows two clients to accessReplication can give good performance and
processing concurrently. Replica server checks that'€liability when one copy crashes by node failures
their orders are valid or invalid. If orders argadfid ~ and network partitions. Implementation must keep
then the system sends “Order Invalid” messages todependencies between operations using causally-
the clients. If orders are valid then the systemmise ~ consistent. ~ Causally-consistent is difficult to
their requests to the primary server. When primaryimplement in hardware among consistency controls
server receives this request, it updates its oway.co but that reduce operation cost using lazy repheati
Updates from primary server are Successfu”y ConSiStency across mUItlple related ObjeCtS is not
finished then these updates are propagated lazily t considered and hence vector timestamps are
other secondary copies. After update propagation issufficient in the lazy replication protocol.
successfully finished, both two clients are seen
synchronizing up-to-date data that are consistent.8. References
Data from all sites are synchronized and consistent [1]. Andrew Berry, “An application-level
6. Perfor mance Evaluation implementation of causal timestamps and causal

) ordering,”|EEE Trans. Distrib.System.EngngMay
To quantity the performance, we use several

measures. Completion time is the total execution of1995.pp-74-86. Printed in the UK.

the application in a given_syste_zm. The performance[g]_ Ahamad, M...., M. Raynal, “An adaptive
measures are Computation time, Synchronization _ _ ,
time, Communication time and Network handling Protocol for —implementing —causally-consistent

time. In these performance measures, we are used thdistributed servicesin Proceedings of the 18

communication time for performance evaluation.) o
IEEE International Conference on Distributed

ComputingSystemsiVlay 1998 , pp. 86-93.

140 —<— Read-Read Condition [3]. Andrew S. Tanenbaum, Maarten van Sten,
130 —¥— Write-Write Condition
“Distributed Systems Principles and Paradigims
% 120 — International edn, Prentice Hall, 2002.
E 1-110 — [4]. B.Lislov, L.Shrira, R.Ladin and S.Ghemawat,
é os0] “Providing High Availability Using Lazy
%« o0l Replication,” iInACM Transactions on Computer-
© 030l Systems10(4): 360-392, 1992.
020 [5]. David, Mosberger, “Memory Consistency
0.10L Models,” Oper.System.Rewol.27, no.1, pp.18-26,
0 < Jan 1993.

1 5 3 4 56 [6]. Mustague Ahamad, Ranjit John, “Evaluation of

No of servers Causal Distributed Shared Memory for Data-race-

free Programs,Georgia Institute of Technology
College of computing, Atlanta, GA 30332-0280,
1994,

Figure [6]: Computation time

Page | 5

Page | 6

